Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Chuan-De Wu, Can-Zhong Lu,* Xiang Lin, Wen-Bin Yang, Hong-Hui Zhuang and Jin-Shun Huang

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, the Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czlu@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{N}-\mathrm{C})=0.013 \AA$
H-atom completeness 55\%
R factor $=0.034$
$w R$ factor $=0.090$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

$\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}\right]_{4}\left[\mathrm{H}_{4} \mathrm{PMo}_{12} \mathrm{O}_{40}\right] \mathrm{Cl}_{\mathbf{2}} \cdot \mathbf{4 \mathrm { H } _ { 2 } \mathrm { O }}$

The hydrothermal reaction of an aqueous solution of sodium molybdate, hypophosphorous acid, hydrochloric acid and N, N-dimethylformamide (DMF) gave rise to tetradimethylammonium tetrahydroxydotriacontaoxo(tetraoxophosphato)dodecamolybdate dihydrochloride tetrahydrate. The polyanion has a β-Keggin structure, with $\mathrm{P}-\mathrm{O}$ distances ranging from 1.535 (5) to 1.552 (5) \AA and Mo-O distances from 1.664 (4) to 2.509 (4) \AA.

Comment

The structure of the $\left[\mathrm{PMo}_{12} \mathrm{O}_{40}\right]^{3-}$ heteropolyanion was first reported by Strandberg (1975) and then by D'amour \& Allmann (1976). Fruchart and Souchay had shown that reduction of the Keggin-structure anion $\alpha-\left[\mathrm{PMo}_{12} \mathrm{O}_{40}\right]^{3-}$ in aqueous acidic solutions leads to a stable heteropoly blue isomeric β-anion (Fruchart \& Souchay, 1968). However, the conclusion had not been structurally proved until 1985 (Barrows et al., 1985). The title compound, (I), is a pseudoKeggin (Keggin, 1934) heteropoly compound, of which four Mo atoms are reduced (confirmed by cerimetric titration) and four bridging O atoms are protonated. The $\mathrm{Mo}-\mathrm{O}$ distances range from 2.090 (4) to 2.115 (3) \AA (cf. $1.92 \AA$ for oxidized structures) and $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ angles from 115.7 (2) to $147.8(2)^{\circ}\left(c f .92^{\circ}\right.$ for the oxidized structures) (Barrows et al., 1985).

As shown in Fig. 1, the $\left[\mathrm{PMO}_{12} \mathrm{O}_{40}\right]^{2-}$ polyanion consists of one $\left\{\mathrm{PO}_{4}\right\}$ tetrahedron and $12\left\{\mathrm{MoO}_{6}\right\}$ octahedra. The central almost regular $\left\{\mathrm{PO}_{4}\right\}$ is a tetrahedron with $\mathrm{P}-\mathrm{O}$ distances ranging from 1.535 (5) to $1.552(5) \AA$ and $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles ranging from 109.1 (2) to $110.0(3)^{\circ}$. The coordination environment for each Mo atom is a distorted octahedron, with Mo-O distances ranging from 1.664 (4) to 2.509 (4) \AA and angles involving the neighboring O atoms from 71.2 (1) to

Figure 1
The structure of the $\left[\left(\mathrm{H}_{4} \mathrm{PMo}_{12} \mathrm{O}_{40}\right)\right]^{2-}$ anion.
105.6 (2) ${ }^{\circ}$. The $\left\{\mathrm{PO}_{4}\right\}$ tetrahedron and $12\left\{\mathrm{MoO}_{6}\right\}$ octahedra are linked together through $\mu_{4}-\mathrm{O}$ atoms. All O atoms of the anion can be divided into three groups: terminal O atoms, $\mu_{2^{-}}$ O atoms and $\mu_{4}-\mathrm{O}$ atoms. The distances between terminal O atoms and Mo atoms range from 1.664 (4) to 1.678 (4) Å, while that of $\mu_{2}-\mathrm{O}$ atoms and $\mu_{4}-\mathrm{O}$ atoms range from 1.865 (4) to 2.115 (3) \AA and from 2.406 (3) to 2.509 (4) \AA, respectively.

The title compound contains two chlorine anions in its crystal structure. The $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}$and Cl^{-}ions and water molecules in the unit cell are shown in Fig. 2. Finally, it should also be pointed out, as no $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}$ion was added to the reaction, the cation might derive from DMF; however, the mechanism is still to be further studied.

Experimental

The title compound was prepared by hydrothermal synthesis from a mixture of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(1.21 \mathrm{~g}, 5 \mathrm{mmol})$, DMF (0.5 ml), 35% $\mathrm{HCl}(2.5 \mathrm{ml}), 35 \% \mathrm{H}_{3} \mathrm{PO}_{2}(0.2 \mathrm{ml})$ in $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$, heated at 433 K for one day and cooled. After filtration, the filtrate was allowed to stand in air for about one week, whereupon blue crystals suitable for X-ray diffraction study were obtained. Elemental analysis, calculated: Mo 53.46, P 1.44, Cl 3.29, C 4.46, N 2.60, H 2.06\%; found: Mo 53.39, P 1.39, Cl 3.30, C 4.41, N 2.54, H 2.02\%.

[^0]Data collection
SMART CCD diffractometer
φ and ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.308, T_{\text {max }}=0.638$
16093 measured reflections
4616 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0451 P)^{2} \\
&+4.5711 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.77 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.45 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.090$
$S=1.10$
4616 reflections
346 parameters

3868 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-16 \rightarrow 17$
$k=-17 \rightarrow 17$
$l=-16 \rightarrow 26$

H -atom parameters constrained
Table 1
Selected geometric parameters $\left({ }^{(},{ }^{\circ}\right)$.

Mo1-O20	$1.668(4)$	Mo4-O10	$2.415(5)$
Mo1-O17	$1.893(1)$	Mo5-O3	$1.669(4)$
Mo1-O15	$1.930(4)$	Mo5-O8	$1.865(4)$
Mo1-O2	$1.941(4)$	Mo5-O12	$1.866(3)$
Mo1-O19	$2.026(4)$	Mo5-O11	$1.933(3)$
Mo1-O6	$2.406(3)$	Mo5-O21	$2.115(3)$
Mo2-O22	$1.672(4)$	Mo5-O10	$2.497(3)$
Mo2-O9	$1.866(4)$	Mo6-O1	$1.672(5)$
Mo2-O14	$1.881(4)$	Mo6-O12	$1.933(4)$
Mo2-O13	$1.949(4)$	Mo6-O9	$1.943(4)$
Mo2-O7	$2.096(2)$	Mo6-O5	$2.442(5)$
Mo2-O5	$2.486(3)$	Mo7-O4	$1.663(4)$
Mo3-O23	$1.678(4)$	Mo7-O8	$1.879(4)$
Mo3-O18	$1.869(1)$	Mo7-O2	$1.892(4)$
Mo3-O13	$1.873(4)$	Mo7-O14	$1.899(4)$
Mo3-O15	$1.896(4)$	Mo7-O24	$2.090(3)$
Mo3-O24	$2.104(4)$	Mo7-O6	$2.508(4)$
Mo3-O6	$2.505(3)$	P1-O5	$1.535(5)$
Mo4-O16	$1.676(5)$	P1-O6	$1.545(4)$
Mo4-O11	$1.921(4)$	P1-O10	$1.552(5)$
Mo4-O19	$1.958(4)$		
O5-P1-O6	$109.1(2)$	Mo4-O10-Mo5	$88.8(1)$
O5-P1-O10	$109.2(3)$	Mo5-O10-Mo5	$91.6(2)$
O6-P1-O10	$109.7(2)$	Mo4-O11-Mo5	$126.3(2)$
Mo7-O2-Mo1	$126.8(2)$	Mo5-O12-Mo6	$149.0(2)$
Mo6-O5-Mo2	$88.3(1)$	Mo3-O13-Mo2	$148.2(2)$
Mo2-O5-Mo2	$95.0(2)$	Mo2-O14-Mo7	$149.4(2)$
Mo1-O6-Mo3	$88.3(1)$	Mo3-O15-Mo1	$126.9(2)$
Mo1-O6-Mo7	$88.4(1)$	Mo1-O17-Mo1	$156.7(3)$
Mo3-O6-Mo7	$90.8(1)$	Mo3-O18-Mo3	$158.5(3)$
Mo2-O7-Mo2	$122.0(2)$	Mo4-O19-Mo1	$147.8(2)$
Mo5-O8-Mo7	$158.2(2)$	Mo5-O21-Mo5	$115.7(2)$
Mo2-O9-Mo6	$128.5(2)$	Mo7-O24-Mo3	$116.6(2)$
Mo4-O10-Mo5	$88.8(1)$		

Symmetry code: (i) $x,-\frac{1}{2}-y, z$.

Only the H atoms based on C and N atoms were generated geometrically; other H atoms were not located. The highest residual peak is located at $(0.1216,0.2500,0.3588), 1.10 \AA$ from O1; the deepest hole is located at $(0.5480,0.2500,0.4682), 0.91 \AA$ from Mo4.

Data collection: SMART (Siemens, 1994); cell refinement: SMART and SAINT (Siemens, 1996); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997).

We gratefully thank the Chinese Academy of Sciences, the State Personnel Ministry and NSFC (20073048) for financial support.

Figure 2
Packing diagram viewed down the a axis.

References

Barrows, J. N., Jameson, G. B. \& Pope, M. T. (1985). J. Am. Chem. Soc. 107, 1771-1773.
D'amour, H. \& Allmann, R. (1976). Z. Kristallogr. 143, 1-13.
Fruchart, J. M. \& Souchay, P. (1968). C. R. Hebd. Seances Acad. Sci. Ser. C, 266, 1571-1576.
Keggin, J. F. (1934). Proc. R. Soc. London Ser. A, 144, 75-100.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL (Version 5). Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART Software Reference Manual. Siemens Analytical Xray Instruments Inc., Madison, Wisconsin, USA.
Strandberg, R. (1975). Acta Chem. Scand. Ser. A, 29, 358-364.

[^0]: Crystal data

    ```
    \(\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NH}_{2}\right)_{4}\left[\mathrm{H}_{4} \mathrm{PMo}_{12} \mathrm{O}_{40}\right] \mathrm{Cl}_{2}\)--
    \(4 \mathrm{H}_{2} \mathrm{O}\)
    \(M_{r}=2153.62\)
    Orthorhombic, Pnma
    \(a=14.9803\) (7) \(\AA\)
    \(b=15.0682\) (8) \(\AA\)
    \(c=22.6217(12) \AA\)
    \(V=5106.3(5) \AA^{3}\)
    \(Z=4\)
    ```

